97 research outputs found

    The BRITE-Constellation Nanosatellite Space Mission And Its First Scientific Results

    Full text link
    The BRIght Target Explorer (BRITE) Constellation is the first nanosatellite mission applied to astrophysical research. Five satellites in low-Earth orbits perform precise optical two-colour photometry of the brightest stars in the night sky. BRITE is naturally well suited for variability studies of hot stars. This contribution describes the basic outline of the mission and some initial problems that needed to be overcome. Some information on BRITE data products, how to access them, and how to join their scientific exploration is provided. Finally, a brief summary of the first scientific results obtained by BRITE is given.Comment: 5 pages, 1 figure, to appear in the proceedings of "Seismology of the Sun and the Distant Stars 2016. Using Today's Successes to Prepare the Future. Joint TASC2/KASC9 Workshop - SPACEINN/HELAS8 Conference", ed. M. J. P. F. G. Monteir

    The LOFT mission concept: A status update

    Get PDF
    The Large Observatory For x-ray Timing (LOFT) is a mission concept which was proposed to ESA as M3 and M4 candidate in the framework of the Cosmic Vision 2015-2025 program. Thanks to the unprecedented combination of effective area and spectral resolution of its main instrument and the uniquely large field of view of its wide field monitor, LOFT will be able to study the behaviour of matter in extreme conditions such as the strong gravitational field in the innermost regions close to black holes and neutron stars and the supra-nuclear densities in the interiors of neutron stars. The science payload is based on a Large Area Detector (LAD, >8m2 effective area, 2-30 keV, 240 eV spectral resolution, 1 degree collimated field of view) and a Wide Field Monitor (WFM, 2-50 keV, 4 steradian field of view, 1 arcmin source location accuracy, 300 eV spectral resolution). The WFM is equipped with an on-board system for bright events (e.g., GRB) localization. The trigger time and position of these events are broadcast to the ground within 30 s from discovery. In this paper we present the current technical and programmatic status of the mission

    The Spectrometer/Telescope for Imaging X-rays (STIX)

    Get PDF
    Aims. The Spectrometer Telescope for Imaging X-rays (STIX) on Solar Orbiter is a hard X-ray imaging spectrometer, which covers the energy range from 4 to 150 keV. STIX observes hard X-ray bremsstrahlung emissions from solar flares and therefore provides diagnostics of the hottest (âȘ†10 MK) flare plasma while quantifying the location, spectrum, and energy content of flare-accelerated nonthermal electrons. Methods. To accomplish this, STIX applies an indirect bigrid Fourier imaging technique using a set of tungsten grids (at pitches from 0.038 to 1 mm) in front of 32 coarsely pixelated CdTe detectors to provide information on angular scales from 7 to 180 arcsec with 1 keV energy resolution (at 6 keV). The imaging concept of STIX has intrinsically low telemetry and it is therefore well-suited to the limited resources available to the Solar Orbiter payload. To further reduce the downlinked data volume, STIX data are binned on board into 32 selectable energy bins and dynamically-adjusted time bins with a typical duration of 1 s during flares. Results. Through hard X-ray diagnostics, STIX provides critical information for understanding the acceleration of electrons at the Sun and their transport into interplanetary space and for determining the magnetic connection of Solar Orbiter back to the Sun. In this way, STIX serves to link Solar Orbiter’s remote and in-situ measurements

    The design of the wide field monitor for LOFT

    Get PDF
    LOFT (Large Observatory For x-ray Timing) is one of the ESA M3 missions selected within the Cosmic Vision program in 2011 to carry out an assessment phase study and compete for a launch opportunity in 2022-2024. The phase-A studies of all M3 missions were completed at the end of 2013. LOFT is designed to carry on-board two instruments with sensitivity in the 2-50 keV range: a 10 m 2 class Large Area Detector (LAD) with a <1{\deg} collimated FoV and a wide field monitor (WFM) making use of coded masks and providing an instantaneous coverage of more than 1/3 of the sky. The prime goal of the WFM will be to detect transient sources to be observed by the LAD. However, thanks to its unique combination of a wide field of view (FoV) and energy resolution (better than 500 eV), the WFM will be also an excellent monitoring instrument to study the long term variability of many classes of X-ray sources. The WFM consists of 10 independent and identical coded mask cameras arranged in 5 pairs to provide the desired sky coverage. We provide here an overview of the instrument design, configuration, and capabilities of the LOFT WFM. The compact and modular design of the WFM could easily make the instrument concept adaptable for other missions.Comment: Proc. SPIE 9144, Space Telescopes and Instrumentation 2014: Ultraviolet to Gamma Ray, 91442

    Observing GRBs with the LOFT Wide Field Monitor

    Get PDF
    LOFT (Large Observatory For X-ray Timing) is one of the four candidate missions currently under assessment study for the M3 mission in ESAs Cosmic Vision program to be launched in 2024. LOFT will carry two instruments with prime sensitivity in the 2-30 keV range: a 10 m2 class large area detector (LAD) with a <1° collimated field of view and a wide field monitor (WFM) instrument. The WFM is based on the coded mask principle, and 5 camera units will provide coverage of more than 1/3 of the sky. The prime goal of the WFM is to detect transient sources to be observed by the LAD. With its wide field of view and good energy resolution of <500 eV, the WFM will be an excellent instrument for detecting and studying GRBs and X-ray flashes. The WFM will be able to detect ~150 gamma ray bursts per year, and a burst alert system will enable the distribution of ~100 GRB positions per year with a ~1 arcmin location accuracy within 30 s of the burst

    Compton Large Area Silicon Timing Tracker for Cosmic Vision M3

    Get PDF
    International audienceProposed in response to the ESA call for the third Medium size mission (M3), CAPSiTT is a small mission designed for a 3-year survey of the non-thermal high energy sky from an equatorial LEO orbit. With a large effective area and a very wide field of view, its single instrument, a silicon tracker, provides good imaging, spectroscopic and polarimetric capabilities with a sensitivity 10-100 times better than COMPTEL. Nucleosynthesis and particle acceleration mechanisms in various sites are the main scientific topics addressed by CAPSiTT
    • 

    corecore